AI for Science Grand Challenges

Jeff Nichols, ORNL
Rick Stevens, ANL
Kathy Yelick, LBNL
AI and Biology
Use AI to Accelerate Synthetic Biology

• **AI to predict the relationship between Genotypes and Phenotypes**
 • Today ML can predict antibiotic resistance from genomes without culturing the organism as accurately as we can measure resistance in the lab

• **ML to predict protein function from protein sequence**
 • Today DL can predict protein structure from sequence (DeepMind, TTIC, etc.)

• **Generative models to design biosynthetic pathways**
 • Today ML can predict metabolic pathways from genomes

• Generative models to compose collections pathways into subsystems

• Generative models to translate from collections of functions to a set of modules

• Models to wrap biological modules with regulation and signaling systems

• Seq2seq models to translate functional blocks into genome sequences

• **AI to control the routine fabrication and synthesis of novel whole organisms**
Building the Database to Support BioDesign

Today we have >300,000 genomes >100,000 metagenomes

In ten years we could have >10,000,000 genomes >1,000,000 metagenomes

Food for Models!
With a robust biodesign capability we could...

- Replace chemical factories with small safe portable biomanufacturing
- Democratize and accelerate drug development
- Produce novel food grade protein and fiber sources
- Produce biological carbon capture systems
- Produce designer polymers that are environmentally benign
- Harness bespoke biological systems for water purification
- Integrate 3D printable bioinks with biological computing and control to produce new types of smart matter
AI at the User Facilities
DOE facilities are the backbone of experimental science

X-rays
- LCLS
- NSLS-II
- SSRL
- ALS
- APS

Neutrons
- HFIR
- SNS

Nano
- TMF
- CINT
- CNM
- CFN

Nanomaterials

Superconductors

Superionic crystals

Washington DC Town Hall
October 22-23
Three AI Problems in Facilities

- Accelerator control
 - Improve beam stability

- Autonomous experiments
 - Improved efficiency in beamlines

- AI-based Data Analysis
 - Automated data reduction
Data Growth will drive AI at the Edge

Data Drivers:
Light Source Brightness and Detection Systems

source: D. Parkinson, LBNL
Grand Challenges across Length scales and Under Extreme Environments

Predict, mitigate and prevent harmful algae blooms?

Understand the brain

Improve capacity of rechargeable batteries
AI and Materials
Transformative advances are possible
On-the-fly materials/chemical synthesis

- Requires autonomous-smart experiments and simulations
 - needs a new class of machine learning algorithms that continually learn and update their predictions based on new data sources, encode physical constraints/laws and models, and learn to estimate fidelity

Delivering materials/chemical $\sim 1000x$ faster and with desired performance/properties
For example – synthesize a new quantum material

• Using Pulsed Laser Deposition (PLD) use high-power lasers to vaporize a sample (the source of the elements) inside a vacuum reaction chamber to produce elements in a vapor plume.

• The vapor plume then deposits on a substrate where it is templated and the materials grows (very fast process).

• The growth and elemental stoichiometry depends on the chamber temperature, rate of vaporization, and deposition time.

• Measure optical properties of the plume in-situ and control the processing variables - if correlations could be found/controlled via AI.
AI and Cosmology
Universe: The Movie

Reconstruct the past from the Big Bang until today and predict the future of our visible Universe, from the largest scales down to our own galaxy.

Use all existing data (galaxy positions, stellar mass, velocities, dark matter maps, gas distribution, tSZ, kSZ, X-ray).

What is dark energy? What is its density evolution in time? What is the nature of dark matter? Did inflation happen?

Provide tightest possible constraints on fundamental physics questions by solving optimal inference problem.
Universe: The Movie
Brought to you by AI

- GANs for image emulation
- GP and DL-based emulators for summary statistics
- CNN-based image classification
- AI-based photometric redshift estimation
- AI methods for inference and reconstruction
The next decade of Sky Surveys

DESI

LSST

CMB-S4

SPHEREx

WFIRST
AI in Manufacturing
Zero waste on-demand bespoke manufacturing

- Optimization of material (polymer, ceramic, composite, metal, or hybrid), shape, topology, and performance (strength, lifetime) given a functional requirement

- Requires advances in
 - science (fundamental understanding of materials and manufacturing processes),
 - engineering (manufacturing systems, sensors),
 - computing (both a priori optimization and real-time control)

Ultimately, “replicators”
Cradle-to-grave system state awareness

• Extension of “digital twin” concept
• Aerospace, civil, mechanical, chemical, nuclear engineering, stockpile stewardship, etc.
• Complete knowledge of a system throughout its lifecycle
 • Design system functionality and monitoring in at the material and manufacturing level
 • Monitor, control and assess in-service system condition (Structural Health Monitoring)
 • Intelligent Life Extension & System Retirement (Structural Health Monitoring/Damage Prognosis/Probabilistic risk assessment)
• Requires advances in sensor technology, understanding of ageing and failure modes, data acquisition and management, cybersecurity, and AI integration
Enable adoption of reliable, low-cost clean nuclear energy

• Leverage latest innovations in materials, manufacturing, and machine learning to enable rapid and economical production of nuclear energy systems
 • not limited by the constraints of conventional manufacturing and pre-1970s materials,
 • meet or exceed safety standards

• Printing a reactor
 • New materials, additive manufacturing, embedded sensors and controls, integrated design and performance prediction, workforce development
Printed reactor components

- Fins to hold fuel and conduct heat
- Cooling channels
- Lid to be welded on top
Accelerate adoption of electric vehicles and renewable energy through improved batteries

• 3-5 year priorities
 • Charge a 1000-cycle, 15-year lifetime, 250-Wh/kg Li-ion battery to 80% in 10-15 min.
 • Understand ageing - electrode / electrolyte interfaces and degradation

• 10-15 year priorities
 • Fundamental understanding of solid-electrolyte interphase (SEI) stability
 • Beyond Li-ion: higher energy density, calendar and cycle life

Leverage AI to bridge atomistic to macroscale properties, behavior, response

https://vibe.ornl.gov/
https://www.sandia.gov/~sarober/research.html
https://qsg.llnl.gov/node/40.html
Enable transition to a circular economy

By 2050, the world’s population will likely pass 10 billion.

As the earth’s raw materials are not limitless, and global labor and the costs for these materials are on the rise, new solutions are needed to mitigate this emerging challenge.

Circular Economy business opportunities provide a way for manufacturing to grow and diversify under these pressures.
AI and Cities
80% of the population in developed countries is expected live in cities by 2050.

By 2025, smart cities are expected to have a market value of more than $2 trillion.

AI will play a role in such areas as: smart parking, smart mobility, smart grid, adaptive signal control, waste management.

Other than AI, smart cities will rely upon: robotics, ADAS, distributed energy generation.
Edge Computing and Sensing

ARRAY OF THINGS
AI for Smart Cities

• Improve quality of life and equality of opportunity
• Optimize mobility, safety, energy, and security
• Improve citizen engagement in civic life
• Increase information sharing and awareness
• Decrease environmental impact of cities
• Improve economic development
• Improve government services while ensuring freedoms
AI Revolution

• Learned Models Replace Data
• Experimental Discovery Refactored
• Questions Pursued Semi-Automonomously
• Simulation and AI Merge
• Theory Becomes Data
• AI Laboratories
Discussion and Questions