BOG 7 Compilers, Libraries, Runtime Contributors

Moderator(s): Barbara Chapman and Michelle Strout

BOGists:

<table>
<thead>
<tr>
<th>Group 1</th>
<th>Group 2</th>
<th>Group 3</th>
<th>Group 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anastasiia Butko</td>
<td>Andres Marquez</td>
<td>Chris Rossbach</td>
<td>Latchesar Ionkov</td>
</tr>
<tr>
<td>Tiffany Mintz</td>
<td>Andreas Gerstlauer</td>
<td>Latchesar Ionkov</td>
<td>George Biros</td>
</tr>
<tr>
<td>Stanimir Tomov</td>
<td>Esam El-Araby</td>
<td>Anastasiia Butko</td>
<td>Meifeng Lin</td>
</tr>
<tr>
<td>Sonia Sachs</td>
<td>Brian Van Straalen</td>
<td>Khaled Ibrahim</td>
<td>Stanimire Zdravkov Tomov</td>
</tr>
<tr>
<td>Sameer Shend</td>
<td>Sam Williams</td>
<td>Alex Aiken</td>
<td>Maya Gokhale</td>
</tr>
<tr>
<td>Pat McCormick</td>
<td>John Mellor-Crummey</td>
<td>Keita Teranishi</td>
<td>Kevin Barker</td>
</tr>
<tr>
<td>Noah Watkins</td>
<td>Mary Hall</td>
<td>Terry Jones</td>
<td>Suren Byna</td>
</tr>
<tr>
<td>Kevin Barker</td>
<td>David Richards</td>
<td>Scott Baden</td>
<td>Andrew Lumsdaine</td>
</tr>
<tr>
<td>Jeremiah Wilke</td>
<td>Sriram Krishnamoorthy</td>
<td>Lingda Li</td>
<td>Carlos Maltzahn</td>
</tr>
<tr>
<td>Antonino Tumeo</td>
<td>Martin Kong</td>
<td>Seyong Lee</td>
<td>Michael Garland</td>
</tr>
<tr>
<td>Pat McCormick</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Prog Env Capability Targets for Extreme Heterogeneity

BOG X brainstorming and discussion of capabilities that will be needed in the 2025-2035 timeframe to make increasingly heterogeneous hardware technologies useful and productive for science applications.
BOG X Targets for 2030

Target 1:

Target 2:
BOG X Current Status

BOG X survey describing the current status of science, technology, or practice related to this theme (starting with material directly from the FSD).
BOG X Current Capability

Capability 1:

Capability 2:
BOG 7: Compilers, Libraries, Runtime Challenge Assessment

- Enormous space of possible mappings of computation and data
 - Accelerators want data organized in different ways than each other and CPUs
 - Difficult for the application developer to reason about and manage all the data movement
- Lack of knowledge of HW either because IP or being planned
 - How to expose specialized functional unit capabilities to compiler?
 - How to do basic and HPC compilation for new, “exotic” architectures?
- Performance models like the Roofline need to be re-thought to include more possible performance bottlenecks
- Need more options for providing information to the compiler and runtime
- How do we get architecture-specific optimizations into compiler infrastructures
- How do you coordinate between different compilers for heterogeneous and hierarchical components in the system?
BOG X: list of key research challenges

Challenge X.1

Challenge X.2
BOG 7: Compilers, Libraries, Runtime: Possible Research Directions Summary

PRD 7.1 - Orthogonal program storage and scheduling strategies at compile time and runtime, potentially with the aid of machine learning

PRD 7.2 - HPC HW abstractions between ISA and BLAS, layer of coordination between the vendors. Interconnect capability for PGAS as an example.

PRD 7.3 - New compiler optimizations, especially for data locality, and somehow make those more immediately accessible in vendor compilers
PRD X.n: Short title of possible research direction

- One paragraph description (3 sentence/bullet)
- Research challenges
 - Metrics for progress
- Potential research approaches and research directions
- How and when will success impact technology?