BOG 11: Crosscut Portability Code Reuse Performance Portability

ASCR Workshop on Extreme Heterogeneity in HPC
23-25 Jan 2018
BOG 11 Contributors

Moderator(s): Anshu Dubey, Xiaoye Li, David Bernholdt

BOGists:

Rob Falgout Christine Sweeney
David Richards Meifeng Lin
Sam Williams Line Pouchard
Scott Baden Stan Tomov
Tiffany Mintz Travis Humble
Wes Bethel
BOG 11 brainstorming and discussion of capabilities that will be needed in the 2025-2035 timeframe to make increasingly heterogeneous hardware technologies useful and productive for science applications.
BOG 11 Targets for 2030

Target 1:

Target 2:
BOG 11 Current Status

● Agreement that abstraction layers are needed for portability
 ○ Success stories are there, mostly groups that rolled their own
 ○ Ongoing efforts in Programming models, DSLs, runtimes, auto-tuning etc
 ○ Interplay between abstracting away the complexity (what we want) and what we have to deal with micromanagement of data placement, algorithms

● Currently gap between research and adoption

● Understanding that we need to have a broad coalition of CS researchers, application developers, and language standards to perhaps solve this problem.
 ○ We may repeat the history of GPUs if we don’t solve this problem.
BOG 11 Challenge Assessment (1/3)

Many topics overlap with other BOGs, specifically 5 and

- **Software Design**
 - Layers abstractions and their interplay
 - Separation of Concerns
- **Barriers to adoption of abstractions**
 - Relates back to how to use meaningfully in applications
- **Provenance**
 - Capturing execution details at runtime and post-hoc, analyzing data to get meaningful insights
 - Heisenberg problem (measurement affecting behavior)?
- **Estimating costs**
 - Of components within the applications, their interactions with machine components
BOG 11 Challenge Assessment (2/3)

- Composability of components
 - At the level of using libraries

- Meta information about data or execution patterns useful to compilers and other tools
 - How to handle data locality in a meaningful way

- Measuring and understanding performance
 - Performance counters: how fine a granularity? Whether we capture the information we need? Can we actually get access to the counter info (privilege/engineering)?
 - Capturing the producer-consumer relationships between multiple accelerators (often different types)

- Understanding what portability implies with extreme heterogeneity
 - Just being able to run Vs using the resources in a useful way
Challenges identified by other BOGs that apply here

- Mapping application heterogeneity to platform heterogeneity
- Building knowledge base of how and where abstraction can be adopted and how they interoperate
- API for interoperability at various interfaces
- Abstract machine model (at what level)
BOG 11: list of key research challenges

Challenge 11.1 -- How to achieve separation of concerns

Challenge 11.2 -- How many layers of abstractions and where, and how do we express these abstractions and how do we incorporate them into applications

Challenge 11.3 -- How to create the coalition of stakeholders that can solve the problem of useful tools development and their adoption

Challenge 11.4 -- How to extract and understand performance, diagnostics, and cost of various components in ways that gives actionable insights.

Challenge 11.5 -- How to communicate meta-information about the application data and execution behavior to compilers and auto-tuning tools
BOG 11 Possible Research Directions Summary

PRD 11.1 - Interdisciplinary research for software design that also informs the tools and abstractions design.

 Possibly includes semantics constraining for languages in use

PRD 11.2 - direction 2 - Use of provenance to extract and understand information about application behaviour so that cost models can be built.

PRD 11.3 - direction 3 - Mechanism for communicating performance hints to compilers and mapping tools (distinct from constructs in languages)
PRD 11.n : Short title of possible research direction

- One paragraph description (3 sentence/bullet)
- Research challenges
 - Metrics for progress
- Potential research approaches and research directions
- How and when will success impact technology?