
Calculating a large number of the lowest eigenvalues and 
corresponding eigenvectors of a Hermitian matrix pencil is a 
common bottleneck in density functional theory codes.  It is not easy 
to make traditional eigensolvers scale beyond thousands of 
processors. We present a spectrum slicing approach to compute 
these eigenpairs at each self-consistent field (SCF) iteration using 
subspace iteration on a number of shifted and inverted problems 
simultaneously. The key to achieving fast convergence and scalable 
performance is to partition the spectrum in an optimal fashion 
(without knowing where eigenvalues are in advance) and select 
shifts as centroids of eigenvalue clusters. We will show how this can 
be done throughout the SCF iterations [6].

Introduction

The SCF eigenvalue problem consists of the partial diagonalization of 
a convergent sequence of symmetric matrix pencils

!(#)%(#) = '%(#)((#) i ≥ 0

Where !(#), ' ∈ ℝ/×/ are the Fock and overlap matrices corresponding 
to the i-th SCF iteration, respectively. %(#) ∈ ℝ/×1 and
((#) ∈ ℝ1×1 are the matrices of the k desired eigenvectors and 
eigenvalues of (!(#), '), respectively. As the SCF iterations progress, 
!(#) converges towards a static matrix !.

Diagonalization of (!(#), ') constitutes a computational scaling 
bottleneck in large scale electronic structure calculations. Typical 
methods adopted by the electronic structure calculations include:

Direct Diagonalization:
• Typically used when k is a considerable fraction of N ((e.g. Gaussian 

basis calculations)
• Scales to thousands of CPU cores for N = O(100,000).
• Scalability on a large number of computational resources (e.g. GPU 

accelerators) is limited.
Krylov-Subspace Methods:
• Typically used when k << N ((e.g. Plane wave calculations).
• Able to compute a small number of eigenpairs for N = O(1e6) or 

larger in only a few wall clock minutes.
• Ill-performant for k larger than a few thousand due to the need to 

solve a large projected eigenvalue problem directly.

The SCF Eigenvalue Problem

To determine initial shift placement, we estimate the density of 
states (DOS) of (!(2), ') as a linear combination of Gaussian 
functions
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#67

1

8#exp −=# 4 − >#
?

Where 8#, =#, and ># are related to the Ritz pairs extracted 
from the Lanczos procedure [2,5].

Initial shift placement is 
taken to be the local 
maximizers of the 
estimated DOS.

Spectrum Partition via Lanczos DOS

Spectral slicing of Silane (SiOSi5) at the HF/6-31G(d) level of theory (N=1109). These examples exhibit our method in the regime of asymptotic 
convergence (fixed matrix). Each ”SCF” cycle used 4 shift-invert subspace iterations on a basis of dimension 200. Each iteration is seeded with the 
basis of the previous iteration. These results compare the DOS and k-means shift placement schemes.

Fixed Matrix

Parallel Implementation and Scaling
• Spectral probes may be constructed independently (and are thus are easily distributed)
• Slice validation scheme and eigenvalue clustering require synchronization between adjacent spectral probes

Spectral Slice Validation
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Spectrum slicing [1] for symmetric eigenvalue problems may be 
achieved by selecting a shift set, @A A67

BC , which partitions the 

spectral region of interest into spectral slices.

In shift-invert spectrum slicing, we aim to compute eigenpairs in the 
spectral neighborhood of each shift. This may generally be forming a 
basis by the shift-invert subspace iteration

D(EF7) = orth ! − @A'
K7
D(E), ' , D(E) ∈ ℝ

/×1

Approximate eigenpairs may then be extracted via the Rayleigh-Ritz 
procedure. The basis along with its associated shift is known as a 
spectral probe.

Shift-Invert Spectrum Slicing
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Once approximate eigenpairs have been computed around each shift, 
each spectral slice may be validated by comparing the exact number 
of eigenpairs and number of approximate eigenpairs computed within 
each slice. The exact result may be computed through use of 
Sylvester’s Inertia theorem on the factorized ! − @A' [4].

Shift selection via K-means Clustering
If the change in eigensystem between and is reasonably small, 

we may update the shift placement to more optimal locations 
via k-means clustering [3] of the validated eigenpairs of the 
previous SCF iteration. 

Clustering in our method serves two purposes:
• To determine more optimal shift placement after DOS shift 

selection
• To track the migration of eigenvalues throughout the SCF 

procedure
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Dynamic Matrix
Spectral slicing of Silane (SiOSi5) at the HF/6-31G(d) level of theory 
(N=1109). This example exhibits our method applied to a convergent 
sequence of matrix pencils (14 iterations). Each SCF cycle used 4 
shift-invert subspace iterations on a basis of dimension 200. Each 
iteration is seeded with the basis of the previous iteration. These 
results compare the DOS and k-means shift placement schemes.
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Figure 1: Spectral slicing of an eigenvalue cluster pertaining to core electrons ([-20.6,-20.55], 37 eigenvalues). (a) Shift placement according to DOS and 
k-means schemes, (b) convergence profile for the slowest converging eigenvalue in the energy window, (c) convergence profile using the DOS shift placement
(no k-means update), (d) convergence profile using the k-means update. No noticeable difference between the two schemes for this energy window. 
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Figure 2: Spectral slicing of an eigenvalue cluster pertaining to electrons near the fermi level ([-0.9,-0.4], 141 eigenvalues). (a) Shift placement according to DOS 
and k-means schemes, (b) convergence profile for the slowest converging eigenvalue in the energy window, (c) convergence profile using the DOS shift placement
(no k-means update), (d) convergence profile using the k-means update. K-means shift placement is discernably beneficial for this energy window. 

• In the case when adjacent spectral probes provide approximation for 
the same eigenpair (spectral overlap), the approximation from the 
probe which is closest to the eigenpair is selection as a validation 
candidate. 

• If the number of validation candidates is the same as the exact 
number of eigenpairs within the spectral slice, the slice is valid.

• If the number of validation candidates is more than expected, those 
with the smallest residual are kept as valid eigenpair approximations

• If the number of validation candidates is less than expected, a probe 
must be added at the midpoint to obtain approximations for the 
missing eigenpairs.

Figure 3: Convergence behavior for the spectral slicing of Silane for a convergent SCF sequence. (a) shows the comparison of DOS and k-means shift 
selection schemes throughout the SCF procedure. C1 and C2 represent the same energy windows as Figures 1 and 2, respectively. (b) Shows the
change in average (exact) eigenvalues for these clusters throughout the SCF procedure. There is a considerable change in the eigenspectrum in iteration
5 of the SCF procedure as seen both in (a) and (b). K-means exhibits superior convergence behavior for C2 and roughly the same behavior for C1, as would
have been expected according to Figures 1 and 2.
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Figure 4: Strong scaling of our method
for Silane HF/6-31G(d)  (N=1109). Results were obtained
On a Cray XC40 (Cori, Haswell compute nodes, 
32 ranks / node). The open circles represent the overall
wall time for diagonalization as a function of
computational nodes, and the triangles represent the wall
time required to form the spectral probes; the difference is
the communication for probe synchronization. The 
dashed line represents linear scaling.


