

Definitions, Context

Reports/sources

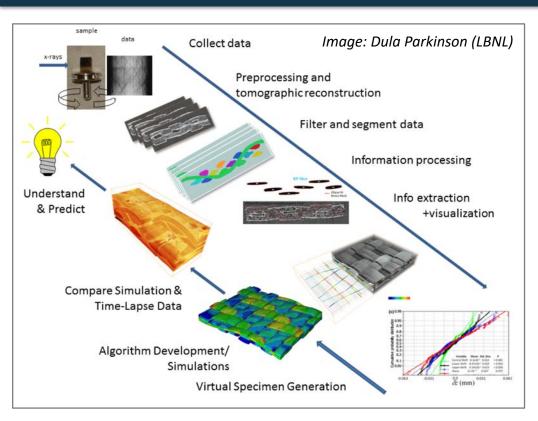
- 2015 ASCR Workshop on Management, Analysis, and Visualization of Experimental and Observational Data
- Requirements Review series (2015-2016): determine requirements for an exascale ecosystem that includes computation and data.
- ASCAC (2013): intertwining of data and compute
 - Science examplars with computing and data challenges
 - <u>Uses "data lifecycle" as a framing mechanism</u>
- NSF (2016): Realizing the Potential of Data Science
 - <u>Uses "data lifecycle" for framing a discussion</u> about R&D of methods/infrastructure, for team/center formation, as an vehicle for workforce development.
 - https://www.nsf.gov/cise/ac-data-science-report

Definitions

- EOD == Experimental and Observational Data
- EOS == Experimental and Observational Science
- Today: summary of key findings, thoughts on implications for SSIO community



Main Message: EOS Impeded by Data Lifecycle Challenges



- Where will it be stored?
 - Volume: multiple EB/yr
- Can it be absorbed and processed quickly enough?
 - Rate: time-critical needs
- Is data usable?
 - No metadata = unusable data
- How is data used?
 - Product vs source, shared vs. private
- How long will it live?
 - Minutes, years, decades?
 - Don't forget about the software
- How will we do it?
 - The critical role of software
 - Collaboration and sharing
- Who is going to do it?
 - Workforce development, retention

ALS-U Enables Next-Generation Science

ALS-U produces a much brighter and focused x-ray source

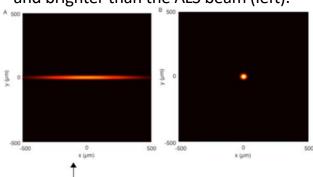
- Basis for experiments for years to come
- Maintain US leadership for "the foreseeable future"

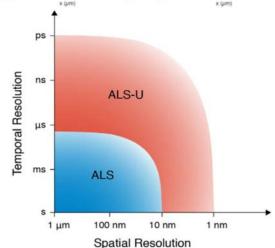
3D nanoscale imaging with high spectral sensitivity over broad space and time scales.

- ALS: homogeneous and simply organized systems
- ALS-U: heterogenous and hierarchical systems, evolving over time

Source: ALS-U: Solving Scientific Challenges with Coherent Soft X-Rays, Jan 2017.

The ALS-U provides an x-ray beam (right) that is much more highly focused and brighter than the ALS beam (left).





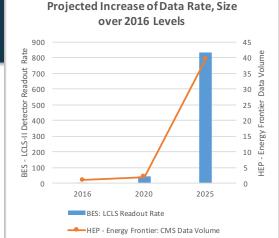
Multiple Exabytes of Data per Year

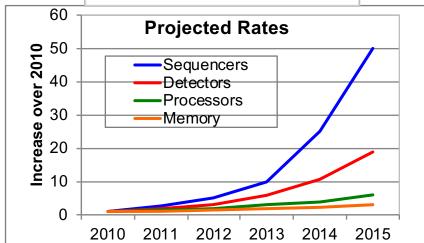
- Detectors and other sensors increasing in resolution and speed faster than processors and memory.
- Science User Facilities (SUFs) are estimating O(10s) PB/yr
- Across SC SUFs in the coming years, <u>the aggregate forecast is</u> <u>multiple EB/yr.</u>

Office of

Science

Are we ready?





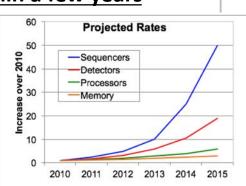
EOD Size Increasing Due to Better Instrumentation, Detectors, Readback

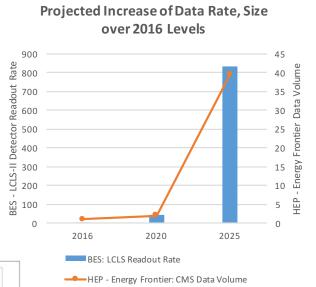
- Increasing detector resolution and readback rate drives exponential data growth rate in light sources, other EOS
- Affects many sciences areas. Here:
 - LCLS-II readback rates: 120 Hz (2016), 5 KHz (2020) to 1 MHz (2025)
 - CMS data volume: 5 PB (2016), 10 PB (2020) to 197*
 PB (2025)
- Each facility: 10s PB/month within a few years

*197 PB is an average of a low and high scenario called out in [1].

Data Sources:

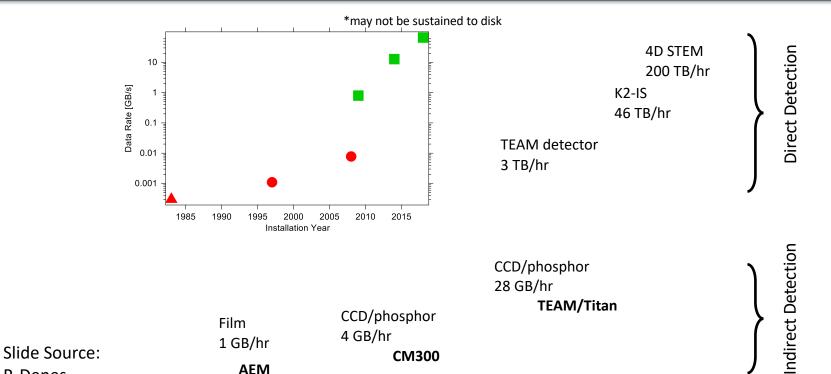
- 1. 2015 HEP Exascale Requirements Review Workshop Report
- 2. 2015 BES Exascale Requirements Review Workshop Report
- 2015 Workshop on Management, Analysis, and Visualization of Experimental and Observational data – The Convergence of Data and Computing





Previous projections comparing rate of growth based on formula (left) compared to projections based on detector characteristics (above).

History of Raw* Detector Data Rates at NCEM/Foundry



P. Denes (LBNL)

AEM

Global View of Problem Space: Data Lifecycle

Science

ALS Use Case: Experiment Planning and Optimization

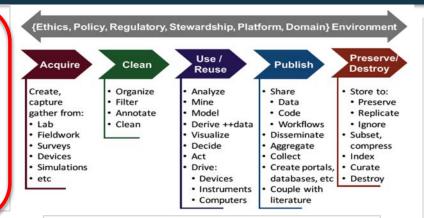
What are the best settings for acquisition of a given material sample on a given beamline?

How to adjust, optimize an experiment in progress?

Recommender Systems

Require access to and use of curated collections of experimental data: training data for ML methods

Collection of curated and trained models, V&V



Source: NSF 2016 report: Realizing the Potential of Data

Curated Data Collections

Require metadata "standards", metadata and data models/formats

Methodology for collecting, managing metadata and scientific data

Math, CS, Data Science **Innovations**

Individual methods: eg., search, see, analyze, store, share

System view: combinations of methods

Platform portability and performance

Sustainability

Community adoption and use

Software engineering practices

Systems, Networks, Methods, and Services for Complex Workflows across the Data Lifecycle

Acquire

Collect from sensors, experiments, simulations

Transfer

Move from instrument to center

Clean

Organize, annotate , filter, encrypt, compress

Use/Reuse

Analyze, mine, model, learn, infer, derive, predict

Publish

aggregate, c using portals, p databases

Preserve

Index, curate, age, track provenance, purge

Edge

- Co-design detectors and analysis
- •In-situ analysis for Slide Source simulation and experiment
 - Robotics

Network

- •Networking "beyond Moore"
- •Autonomous networks
- Named data networking

Processing

- •Feature selection
- •Domain-specific compression
- Metadata learning
- •QA/QC

Analytics

- Statistical learning methods
- •Type-specific analytics
- Simulate / invert
- Scalable software

Distribution

- Scientific databases
- •Directories and search
- •User interfaces
- Availability
- Data integrity

Management

- Fast indexing and data management
- •Review and prioritize
- Social models

K. Yelick

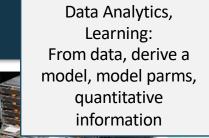
(LBNL)

Data: Product or Source?

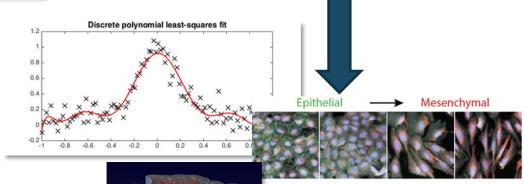
Modeling/simulation: Solution to equations produces data.

Navier-Stokes momentum equation (convective form)

$$\frac{\partial \mathbf{u}}{\partial t} + \mathbf{u} \cdot \nabla \mathbf{u} = -\frac{1}{\rho} \nabla \bar{p} + \nu \nabla^2 \mathbf{u} + \frac{1}{3} \nu \nabla (\nabla \cdot \mathbf{u}) + \mathbf{g}.$$



NSORS



Diversity of Data and Use Cases, Diversity of Challenges

Workflows: data+processing pipelines

- For accommodating production science
- Time-sensitive data movement, computations
- "Fractal" in nature, unbiquitous

Curated data collections

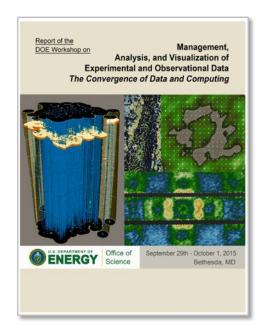
- How to capture provenance
- Next-generation search methods

New types of methods, approaches

- Supervised learning: requires lots of high quality training data
- Computations, analysis that rely on multi-modal data

New types of operational use

- Experiment planning
- Experiment optimization (time sensitive)



2015 EOD Workshop Report – Key Findings

Challenges:

- All EOS projects struggle with a flood of data
- EOS projects have unmet, time-critical data needs
- There is a risk of EOS data being unusable
- Collaboration and sharing are central to EOS projects
- EOS data lifecycle needs not being met
- Software plays a central role in all EOS projects
- Workforce development, retention concerns

Opportunities:

- Data reuse: new science after initial experiment
- Faster science
- Better science
- Cost savings: economy of scale

