Streaming Data

Graham Heyes

Data Acquisition Support Group

Thomas Jefferson National

Accelerator Facility

(Jefferson Lab)

Example data source

- This talk will use as examples data sources that I am familiar with. I hope to show that the challenges are more general.
- My lab studies nuclear physics, the structure of the nucleus, using a high energy beam of electrons and stationary targets of various materials.
- Each interaction between an electron and a nucleus, an event, is recorded using an array of various types of detector that measure properties of particles produced by the event.
- Our two large detectors are CLAS12 in hall-B and GlueX in hall-D.
- Each detector has hundreds of thousands of data sources.

Data/work flow

- Custom and commercial electronics in VME format digitizes signals from the detectors.
- Most of the signals are noise or uninteresting events.
 - Algorithms implemented in FPGA firmware use prompt data to form a 'trigger'. – analogy: camera shutter
- Online Event Builder.
 - Merges event fragments from different detectors.
 - CLAS12 has ~100 Readout controllers and a 12 kHz event rate ~1.2 MHz rate of event fragments at the EB.
- Event Recorder software writes events to files on disk. and mass storage system archives to tape.
 - Tens of PB per year of raw data.
- Each file contains a linear sequence of self contained events each tagged with an event number.
 - Analogy, events = individual frames on rolls of cine film.
- Groups of files are processed offline by "jobs" on a batch system fronted by a workflow management tool.
 - Onsite cluster, OSG and NERSC in use.
 - Algorithms validated using simulated data based on theory.

What is wrong with this model?

- Trigger and event building require strict online synchronization.
 - Have to delay prompt data until slowest data appears.
 - All parts of DAQ have to work. One failure stops the pipeline.
- Relies on good understanding of the trigger.
 - Triggering has the potential to throw away useful data.
- Doesn't work well when events overlap in time.
- Obvious bottlenecks force us to
 - Limit overall event/data rate burns accelerator time.
 - Deploy complex system topologies.
 - Make science compromises to limit data volume.
- Batch processing files of events means that each job gets all of the data in a file even if only a part is of interest.
 - Each event is treated in isolation impossible to deal with events that overlap in time.
- The whole workflow is slow moving. Typically take months of data before starting analysis which can then take years.

Streaming Data Model.

- Why take still photos when you can make a movie?
- Data is continuously read, timestamped at source, and flows in parallel through the system with minimal online processing.
 - Minimal or no trigger.
 - "Save it all and figure it out later".
 - No science compromise, all data saved.
 - Parallel data flow by default.
 - Reduced or eliminated bottlenecks.
 - Slow detectors stream at their own rate, no need to delay fast detectors.
 - Complicated issues dealt with offline.
 - · Detector topology.
 - Event overlap.
 - Makes possible new data analysis methods.

Streaming data

- Streaming data processing requires two layers:
 - A storage layer
 - Record ordering example time vs detector
 - Strong consistency implied by reproducible streams of data.
 - Fast reads and writes of streams of data.
 - A processing layer.
 - Consumes data from the storage layer.
 - Running computations on data.
 - Notify the storage layer to delete data that is no longer needed.
 - Return stream of results to the storage layer.
- Have to plan for quality of service, scalability, data durability, and fault tolerance in both the layers.
 - Jefferson lab NP experiments run 24/7 (>60% uptime) for 34 weeks per year.
 - Running the accelerator is expensive can't lose data.

Streaming NP Data Readout

- Detector specific interfaces stream data on a fiber with a well defined protocol.
 - Low cost plug and play kit of parts.
- Data streams directly to nearline managed storage.
 - -RAM, SSD, or RAID?
- Local compute cluster processes data in pseudo real time.
 - -Scale? 500 mS/event * 12 kHz
 - Minimum ~5000x 2.5 GHz Broadwell cores.

Real world project

- CLAS12 is a general purpose detector with a lot of subdetectors.
- RICH detector is read out via fiber to Sub-System Processor (SSP) boards in VXS crates.
- Same setup is used by GlueX DIRC.
 - RICH (CLAS12) and DIRC (GlueX) examples
 - ALL FPGA boards have been tested(Completed in May 2016)
 - Production ASIC board(s) [2-MAROC and 3-MAROC] completed
 - Detector final assembly is ongoing

391 -- H12700 Hamamatsu 64-anode PMT

Total anodes: 25,024

On Board 192 channel FPGA Readout Board MAROC3 ASIC mates to maPMT Artix 7 FPGA drives LC fiber optic transceiver

Overview

Beamline

VXS Sub-System Processor 32 - 2.5Gbps links to RICH FPGA Readout Boards

RICH Detector

150,144 channels

Other groups working in this space

- BNL PHENIX and STAR are developing streaming detector readout systems.
- CERN
 - -LHCb
 - Other LHC groups are looking in this direction too.
- Greta experiment at FRIB.
- The streaming data model is common in other areas:
 - Astronomy
 - Climate
 - -Plasma
 - Many others

Why change now?

- Affordable technology to make streaming readout work is starting to appear.
- Experiments are planned that would be much simpler with streaming data.
- A few things are critical but need further R&D.
 - Timing
 - For a streaming data source to work timing is critical.
 - How do we accurately distribute the timestamps and clocks?
 - Data flow.
 - A single channel of a 250 MHz flash ADC 14-bit samples every 4 nS ~ over a gigabyte per second of data per channel - we have thousands of channels.
 - What real time algorithms can reduce this rate without discarding useful science?
 - What is the optimum data transport protocol?
 - How do we control the flow of data?
 - Data storage.
 - We are used to a single dimension file indexed by event number.
 - What is the optimum way to store multidimensional time ordered data?
 - Data retrieval and processing
 - Offline what is the optimum way to access and process this data?

Timing

- A proposed experiment at Jefferson Lab will bounce electrons off nuclei to look for a rare inelastic event where a proton is ejected.
 - The event is "tagged" by the coincidence between a proton in one detector and an electron in another.
- The electron is detected within nanoseconds of the interaction but the associated proton is detected in microseconds.
- There are many elastically scattered electrons that are not associated with a proton.
- For streaming readout of this detector to work we need to tag the data with a timestamp to sub-nanosecond accuracy.
 - The timestamps from thousands of individual channels must be synced.
 - The timestamp must be implemented in a way which doesn't blow up the data volume.

Data flow

- Streaming data requires.
 - Well defined quality of service and latency.

Analogy, you can't stand at the bottom of a waterfall and control the flow by pushing upstream.

- Control at source or
- Discard at destination.
- An area requiring modeling.
- What exists already?
- What are known pitfalls?
 - Drivers and software stacks are often not optimized streaming.

Data storage

- In existing systems data is 1-D sequenced by event stored in files.
- In a streaming system data is at least two dimensional:
 - Time vs Detector
 - Probably multidimensional depending upon experiment.
- What is the optimum format?
 - Database? Could be slow and cumbersome for many PB/yr of data.
- What is the optimum hardware?
 - Performance vs cost.

Data retrieval and processing

- Data can be retrieved as time based slices across streams or by stream.
 - In the vertical slice based method:
 - A virtual trigger defines the start of a slice.
 - Each slice is wide enough to contain all of the data from an interaction.
 - Slices may overlap and contain data from other interactions.
 - Slices would be processed in parallel.
 - This is a different way for us to access our data but the processing is familiar and well understood.
 - Moved event building from online, where data is in motion, to offline where it is stationary/
- An alternative is to delay looking at data as events and deal with individual streams.

Data retrieval and processing

- Reimagine applications as nets of services processing streams of data objects.
- Example CLARA, used in CLAS12 and in collaboration with NASA (NAIADS project)
 - Standardized application building blocks one data type in, another out.
 - Streams route data to services running on appropriate hardware.
 - Need a method of associating cost with services.
- Currently we ship an application plus data to OSG or NERSC in a container.
- Instead deploy services at remote sites and connect them with streams.

Theory, machine learning and AI

- NP currently has a very slow experiment/theory cycle.
- Part of the problem is how the data is analyzed.
 - We laboriously track the particles through the detectors boil it down to a few numbers.
 - Simulation does the same thing then we compare the results.

Alternative :

- A streaming DAQ generates a rich multidimensional data set.
- Simulation does the same thing.
- Compare patterns in simulated and real data directly using Al technology.
- Analogy: X-ray crystallography.
 - You don't ray trace every x-ray through a crystal.
 - You compare diffraction patterns to determine structure.

Summary

- Many science fields use the streaming data model for data acquisition and NP is moving in this direction.
- We would like to use the same model for data processing.
- Critical areas for R&D are:
 - Timing accurate determination of when data was generated.
 - Data Transport true plug-and-play high performance transport of streams of data with guaranteed quality of service.
 - Data Storage Store multi-dimensional datasets efficiently.
 - Data processing Transition from monolithic Apps to services processing streams.
 - Integration with AI.
- I believe all of these areas would be of common interest.

