

Dan Ernst, PhD Advanced Technology SSIO - 9/20/18

Some Starting Context

- I'm not a storage person
- I cover node architecture for Cray
- One particular focus has been memory
 - Both long-term and day-to-day
- Memory led me to some storage (media) stuff
- Memory and storage are the same thing?

Generic Hierarchy Problem Statement Slide

- Data-intensive applications need fast access to storage
- Persistent memory is the ultimate high-performance storage tier
- NVDIMMs have emerged as a practical next-step for boosting performance

SCM Req

STAN

DRAM

SCM

Expected Future

Processing

Memory

Storage

bits.

4G

128G

5ns

50ns

1ms

10_{ms}

Node-Side Memory: What Do We Know?

Memories Have Parameters

- Insight: Most NVM media have near-zero idle power, but are very powerhungry when you actually use them
 - Especially for writes
- Insight #2: This isn't really a media (cell) technology chart

Memory System Design Space (System Level)

• 1 EF system with 0.2 Byte/s per Flop bandwidth

Bandwidth Allocation Boundaries

- Insight: HBM:DDR:PCM bandwidths likely to have 100:10:1 ratio
 - Likely better in the short term, but configurations will eventually be power constrained for Exascale

FF2 Study of Access Density

- Insight: Without thoughtful staging/streaming, ratio > 10:1 will not perform
- Corollary: SCM is unlikely to be usable with existing memory use cases

Unified Heterogeneous Systems

- In an era of specialization: a diverse user base
 - → diverse applications
 - → diverse requirements
- Also rising use of diverse workflows
- Data interchange becomes crucial component

Data should be globally visible

- → Not locked to a node
- → Persists through jobs
- → Some Guarantees

Analysis of Applications

To reach the goal of producing architectures well-suited to HPC applications...

... you must understand the applications

An Example Application Framework

- Assume X compute nodes
- Assume network (like Cray Aries) with good performance on small msgs
- Assume uniform random access to data
 - But with varying object sizes

Goal:

- Capacity of N bytes of global Persistent data of whatever media type, AND...
- Reach required total data bandwidth to match aggregate compute injection bandwidth
 - This number is adjusted based on supported network message rates

Let's explore persistent data configurations to meet this

- Calculate "reasonable" internal media bandwidths on "memory nodes" at minimum capacities
- Scale capacity per endpoint to explore different balances

System Optimization: Flash

Capacity per Memory Node

—Flash: 8B —Flash: 64B —Flash: 256B —Flash: 4kB

Capacity per Memory Node

——Flash: 8B ——Flash: 64B ——Flash: 256B ——Flash: 4kB —— PCM

The user interface to these should be the same!

"Put my data in the store"

"It should still be there when I spin up my next jobs"

"The software cost to accomplish that shouldn't destroy the utility"

Takeaways

- 1. Memory and Storage are often drawn as triangles
 - If your goal for adopting SCM is to fill in your triangle, you shouldn't be in charge of anything
- 2. For existing scientific apps, direct access to on-node SCM is worth little at scale
 - SCM seems best shared on the network (at least logically)
- 3. The issue in point #2 is limited to existing simulation and does not mean it does not have a use case
 - Lowest-hanging fruit is probably workflow-related
- 4. Decoupling remote persistent memory from compute nodes has value
 - Upward evolution of parallel FS, but without the baggage, please
- 5. New memories can be arranged in a diverse set of configurations
 - Implies that software interface architectures should be as media agnostic as possible
- 6. None of those configurations provides a free lunch
 - Specific application/workflow wins should be the target
 - Know your data patterns!

Thank You!

dje@cray.com