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Topic Areas: Novel Algorithms, Trustworthy AI, Foundation Models.
Challenge: Interpretable AI models for mechanism discovery in natural and synthetic gene regulatory systems.
This aligns with DOE’s mission to uncover principles of biological function and the energy-related pathways.
Opportunity: Improve interpretability of AI by bridging gene regulation models and protein models. Improve AI
approaches in learning symbolic functions from sparse, noisy dynamic gene regulation data.
Timeliness: Advances in trustworthy AI algorithms and AI knowledge representation, Improved access to data,
Access to HPC resources.

Challenge: The modeling of gene regulation is critical for understanding how to design and reprogram microbes and
plants for DOE BER’s objectives in energy independence and environmental resilience. We identify two key areas
in which AI can improve the accuracy, generalizability, and trustworthiness of gene regulation models. First, such
models have yet to benefit from recent AI/ML breakthroughs at the molecular scale, such as AlphaFold [1] for pro-
tein structure prediction and RFDiffusion [2] for protein design. These models provide rich vector representations of
biomolecules that could be used to enhance dynamical models of interacting genes. Second, dynamical gene regula-
tory networks have been traditionally modeled using purely domain-specific knowledge (e.g. through sets of known
interactions) or with purely data-driven methods (e.g. through LSTMs or neural ODEs). Traditional modeling is chal-
lenging because we often do not know a priori what molecules interact (i.e. inferring the interaction graph) or the
complex nonlinearities that describe how they interact. On the other hand, purely data-driven methods typically lack
interpretability, making them less useful for designing perturbative experiments and de novo synthetic gene regulatory
circuits. These applications are critical to understanding and designing behavior in the rhizobiome and plant engineer-
ing application areas. Furthermore, current tools such as AI-Feynman [3], SINDy [4], and other symbolic regression
systems [5, 6] are built for standard physical systems, and not well suited for the non-Gaussian stochastic dynamics
common to gene regulatory networks [7]. Our position is that the integration of advanced molecular machine learning
and novel biologically-informed dynamical system discovery could enable trustworthy workflows for understanding
and controlling gene regulation of plants and microbes.
Opportunity: We envision two clear opportunities to address these challenges. First, to bridge molecular scale
AI/ML models [1, 8, 2] for the design of synthetic gene regulatory circuits, we hypothesize that vector-embeddings
extracted from these foundational neural networks can be fine-tuned to predict the relevant parameters (e.g. Hill-
function coefficients and binding affinites) that are required for simulating gene regulatory networks. Such a fine-
tuning is known to be computationally challenging in terms of data access (limited DNA-TF affinity measurements)
and computation (large, complex models requiring HPC solutions). DOE-BER infrastructure KBase [9] will be a key
information source for plant and microbe ‘omic information. The Protein Databank and publicly available data from
the MITOMI assay to ascertain affinity measurements for promoter sites that bind multiple TFs [10] will be crucial to
fine-tuning such models. The computational needs can be addressed through exascale computing at OLCF.
Second, we envision extending the current approaches data-driven model discovery [4, 3] to stochastic dynamics
which are quintessential to understanding how genes are regulated. The loss function by which these learning sys-
tems train often assume symmetric, Gaussian noise; however we have previously shown that simple Gaussian noise
characteristics in the loss function can lead to spurious and misinterpreted biological consequences [7]. Thus, there
is an enormous opportunity to generalize existing deep learning based model discovery approaches to include non-
Gaussian dynamics. However, such non-standard loss functions and stochastic models impose costly computations,
either through Finite State Projections or Gillespie Simulations [11]. These challenges require HPC solutions avail-
able at DOE leadership computing facilities. Data for such approaches include publicly available KBase data and
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other single-cell microbial RNA-seq data, along with potential existing collaborations for time-series fluorescence
microscopy data.
Finally, these two opportunities may be brought together to build more modular workflows for BER applications
in engineering microbes for bioenergy feedstock productivity and sustainability; for example the entire end-to-end
methodology could backpropagate from stochastic dynamics at the system-level (desired gene regulatory activity) to
the design of transcription factors. These modeling efforts could be validated through both in-distribution and out-
of-distribution datasets. For example, we envision validating promoter activity curves both through existing publicly
available datasets (e.g. PDB) and with novel datasets from DOE collaborators.
Timeliness: Integrating computational modeling of proteins and stochastic dynamics of gene regulatory processes
with interpretable AI can advance the discovery and engineering of complex biological systems. Modern HPC systems
now enable efficient, large-scale simulations of complex systems. Tools like molecular dynamics for protein modeling
and stochastic simulation algorithms for gene expression such as the Gillespie algorithm have significantly improved
in scalability and performance. Furthermore, the availability of high-throughput experimental data, such as single-cell
RNA sequencing and time-lapse microscopy offers detailed inputs that could enhance the accuracy of the discovered
gene regulatory models. Lastly, research in systems biology and synthetic biology has matured over the past two
decades, highlighting the importance of integrating molecular-scale dynamics such as protein structure and dynamics
with cellular processes such as gene regulation. Multi-scale, interpretable modeling is necessary to engineer such
systems. By integrating machine learning frameworks and mechanistic models will bridge these large research gaps.
This aligns well with the DOE’s mission to uncover principles underlying biological function and energy-relevant
pathways.
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[10] Amir Shahein, Maria López-Malo, Ivan Istomin, Evan J Olson, Shiyu Cheng, and Sebastian J Maerkl. Systematic
analysis of low-affinity transcription factor binding site clusters in vitro and in vivo establishes their functional
relevance. Nature communications, 13(1):5273, 2022.

[11] Zachary Fox and Brian Munsky. Stochasticity or noise in biochemical reactions. arXiv preprint
arXiv:1708.09264, 2017.

2


